Hidden Markov Models with Multiple Observation Processes
نویسنده
چکیده
We consider a hidden Markov model with multiple observation processes, one of which is chosen at each point in time by a policy—a deterministic function of the information state—and attempt to determine which policy minimises the limiting expected entropy of the information state. Focusing on a special case, we prove analytically that the information state always converges in distribution, and derive a formula for the limiting entropy which can be used for calculations with high precision. Using this fomula, we find computationally that the optimal policy is always a threshold policy, allowing it to be easily found. We also find that the greedy policy is almost optimal.
منابع مشابه
An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملPackage 'msm' Title Multi-state Markov and Hidden Markov Models in Continuous Time
Description Functions for fitting general continuous-time Markov and hidden Markov multi-state models to longitudinal data. Both Markov transition rates and the hidden Markov output process can be modelled in terms of covariates. A variety of observation schemes are supported, including processes observed at arbitrary times, completely-observed processes, and censored states.
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملTraining Hidden Markov Models with Multiple Observations-A Combinatorial Method
Hidden Markov models (HMMs) are stochastic models capable of statistical learning and classification. They have been applied in speech recognition and handwriting recognition because of their great adaptability and versatility in handling sequential signals. On the other hand, as these models have a complex structure, and also because the involved data sets usually contain uncertainty, it is di...
متن کاملImproved Classification Using Hidden Markov Averaging from Multiple Observation Sequences
The enormous popularity of Hidden Markov models (HMMs) in spatio-temporal pattern recognition is largely due to the ability to “learn” model parameters from observation sequences through the Baum-Welch and other re-estimation procedures. In this study, HMM parameters are estimated from an ensemble of models trained on individual observation sequences. The proposed methods are shown to provide s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1010.1042 شماره
صفحات -
تاریخ انتشار 2007